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SYNTHESIZING STYLE-SIMILAR RESIDENTIAL FACADE FROM 
SEMANTIC LABELING ACCORDING TO THE USER-PROVIDED 
EXAMPLE 

JIAXIN ZHANG1, 2; TOMOHIRO FUKUDA2; NOBUYOSHI 
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Abstract. Example-guided facade synthesis aims to synthesize 
realistic facade images from semantic labels drawn by architects and 
example images of user preferences. The automated synthesis approach 
allows for the efficient generation of facade solutions that will facilitate 
effective communication between stakeholders and creative inspiration 
for architects. This study proposes a conditional generation adversarial 
network with style consistency to solve the problem of example-guided 
image synthesis. Specifically, the synthesis model is divided into two 
stages: first, the domain of the semantic label map is transferred to the 
domain of the realistic image using the pix2pixHD framework to ensure 
that the synthesized facade in the intermediate stage can be semantically 
consistent with the designed facade; Second, we use the Deep Photo 
Style Transfer (DPST) framework to faithfully move the implied 
features of the realistic facade image synthesized in the previous step to 
the domain of the provided example to ensure consistency of style. In 
summary, the proposed method can constrain the synthesis of new 
residential facades from the semantic labels and example styles. The 
synthesized residential facades can be consistent with the example 
styles provided by the client while matching the semantic labels of the 
facade created by the designer, producing satisfyingly realistic 
transitions in various cases. 

Keywords.  Residential Facades, Style Transfer, Image Synthesis, 
Generative Adversarial Networks, Building Facade Design 
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Figure 1. Automatic synthesizing facade images from user-provided examples and designer-created 
sketches as guides 
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Figure . he overvie  of the proposed method. 
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Figure . aired residential facade dataset for semantically consistent synthesis. 
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Figure . aired residential facade dataset for semantically consistent synthesis. 

Villa

Apartment

Wall

Windows

Door

Roof

Road

Green

143



     

 

 E   

        
    

               
              

                
           

                
                
                

                 
              

             
               

           
         

Figure . ata processing and augmentation. 

Figure . raining oss. eft is generator loss. he middle is discriminator loss on fake images. 
ight is discriminator loss on real images. 
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Figure . uilding facades generated y pix pix . 
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Figure . uilding facades generated y pix pix . 
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Figure . Facade synthesis results from semantic la eling and provided examples. 
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Figure . ynthesize stylistically consistent facades using semantic la els and provided examples. 
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VARIABILITY IN MACHINE LEARNING FOR MULTI-CRITERIA 
PERFORMANCE ANALYSIS 

VICTOR OKHOYA1AND MARCELO BERNAL2 
1,2Perkins&Will Architects.  
1victor.okhoya@perkinswill.com  
2marcelo.bernal@perkinswill.com  

Abstract. Parametric analysis is emerging as an important approach 
to building performance evaluation in architectural practice. Since 
architectural performance has many competing metrics multi-criteria 
analysis is required to deal effectively with the complexity. However, 
multi-criteria parametric analysis involves large design spaces that are 
expensive to compute. Machine learning is emerging as an important 
design space reduction method for multi-criteria analysis. However, 
there are many types of machine learning algorithms and architects can 
benefit from understanding which algorithms perform well on which 
tasks. Using a mid-rise commercial residential tower project this paper 
investigates three common machine learning algorithms for 
performance against three common performance metrics. The 
algorithms are multi-layer perceptrons, support vector machines, and 
random forests, while the metrics are site energy, illuminance, and a 
value function that combines them both. In addition, we seek to 
understand what factors are most impactful in improving algorithm 
performance. We investigate four impact factors namely sample size, 
sensitivity analysis, feature selection, and hyperparameters. We find 
that multi-layer perceptrons perform best for all three performance 
metrics. We also find that hyperparameter tuning is the most impactful 
factor affecting multi-layer perceptron performance. 

Keywords.  Parametric Analysis, Machine Learning, Design Space  

1. Introduction 
Parametric analysis is a broad and generic term to describe a computational approach 
to problem-solving where a range of input parameters are related and varied. Evins 
(2013) presented a review of applying parametric analysis to sustainable building 
design problems. Machairas et al. (2014) reviewed methods for parametric building 
design optimization. Bernal et al. (2020) compare them against design heuristics.  
Nguyen et al. (2014) reviewed simulation-based parametric analysis methods focusing 
on simulation programs, optimization tools, the efficiency of optimization methods, 
and industry trends.  

In attempting to implement parametric analysis in architectural practice several data 
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